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Slow Modes in Passive Advection
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The anomalous scaling in the Kraichnan model of advection of the passive
scalar by a random velocity field with nonsmooth spatial behavior is traced to
the presence of slow resonance-type collective modes of the stochastic evolution
of fluid trajectories. We show that the slow modes are organized into infinite
multiplets of descendants of the primary conserved modes. Their presence is
linked to the nondeterministic behavior of the Lagrangian trajectories at high
Reynolds numbers caused by the sensitive dependence on initial conditions
within the viscous range where the velocity fields are more regular. Revisiting
the Kraichnan model with smooth velocities, we describe the explicit solution
for the stationary state of the scalar. The properties of the probability distribu-
tion function of the smeared scalar in this state are related to a quantum
mechanical problem involving the Calogero-Sutherland Hamiltonian with a
potential.

1. INTRODUCTION

One of the basic open problems in fully developed hydrodynamical tur-
bulence is the understanding of the origin of observed violations of the
Kolmogorov<17) scaling. The violations indicate presence of strong short-
distance intermittency in the turbulent cascade, i.e. of frequent occurrence
of large fluctuations on short distances. Recently some progress has been
achieved in the understanding of the analogous problem for the passive
advection of a scalar quantity by a random velocity field. The scalar is
known to exhibit strong short-distance intermittency even if such is absent
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in the velocity field. In the simplest model of the passive scalar, due to
Kraichnan,<18) one assumes a Gaussian distribution of time-decorrelated
and spatially nonsmooth velocities. The anomalous scaling of the scalar in
this model was related in refs. 7, 15, and 24 to zero modes of differential
operators describing the stochastic evolution of the flow. In the present
paper we elaborate on this idea showing that the short-distance intermit-
tency of the scalar is due to the presence of slow collective modes in the
otherwise super-diffusive evolution of the (quasi )-Lagrangian trajectories of
fluid particles. We show that in the Kraichnan model the slow modes,
reminiscent of resonances in multi-body problems, are organized into
infinite multiplets of descendants with the zero modes playing the role of
primary objects. This structure might indicate the presence of hidden
infinite symmetries in the Kraichnan problem.

The other important feature of the Lagrangian flow in nonsmooth
velocities is its intrinsically probabilistic character: the Lagrangian trajec-
tories of the fluid particles behave randomly even in a fixed velocity field.
This phenomenon appears to be closely related to the presence of the slow
modes in the stochastic flow of fluid particles. In more realistic velocity
fields which are regularized on the viscous scale the effective stochasticity
of the fluid trajectories is due to their sensitive dependence on initial condi-
tions on scales shorter than the viscous one. We expect both phenomena:
the presence of resonant slow modes in the Lagrangian flow and the non-
deterministic character of the fluid trajectories, to be present in more
realistic high Reynolds number velocity ensembles and to be responsible
for their intermittence.

The version of the Kraichnan model with smooth velocity fields, rele-
vant for the description of the distances smaller than the viscous scale, has
been intensively studied, see refs. 19, 24 and 25 to 10. We return to this
case developing further the tools of harmonic analysis used first for this
model in refs. 24 and 26. These tools allow a fast calculation of the the
Lyapunov exponents for the flow of fluid particles found first in refs. 6 and 8.
We also explicitly construct the stationary state of the scalar relating its
functional Fourier transform to a certain Schrodinger operator on the sym-
metric space SL(d)/SO(d) where d is the space dimension. In particular, we
compute the exponential decay rate of the probability distribution func-
tions p(0) of smeared scalar values obtaining in three dimensions (and
above) a result different from that of refs. 6, 8, and 10. The discrepancy is
traced to the contribution of correlations of different (pairs of) fluid trajec-
tories disregarded in refs. 6, 8, and 10. For the exponential decay rate of the
Fourier transform of p(6) our results reproduce fully the calculations of
refs. 6 and 8 and confirm their semiclassical interpretation proposed in
ref. 10.
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The paper is organized as follows. In Sect. 2 we present the Kraichnan
model and obtain its solution employing a path integral formalism. Sec-
tion 3 recalls briefly the analysis of refs. 3 and 15 establishing anomalous
scaling of the scalar by perturbative analysis of the scaling zero modes of
operators governing the flow. The physical interpretation of the zero modes
as scaling structures conserved in mean is the subject of Sect. 4. Section 5
discusses the collective slow modes of the random flow of fluid particles.
The analytic origin of the slow modes is unraveled in more technical
Sect. 6. Section 7 describes the intricacies of the probabilistic description of
fluid trajectories. Finally, Sects. 8 and 9 study in detail the case of
Kraichnan model with smooth velocity field elaborating on the earlier
results of ref. 24 and of ref. 25 to ref. 10. Appendix A explicitly analyzes the
slow modes in the relative motion of two fluid particles in nonsmooth
velocity field. Appendix B contains some more details on the smooth
velocity case related to the results of refs. 1 and 6.

We shall call R(t, x; t0, x0) the evolution kernel and the corresponding
operator R(t, t0) the evolution operator. The solution of Eq. (2.1) has the
form
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2. KRAICHNAN MODEL OF PASSIVE SCALAR

Let us consider an advection of a scalar quantity T(t, x) (the tem-
perature) in d space dimensions. The time evolution of T is governed by the
linear equation

where v(t, x) is the incompressible ( V - u = 0) velocity field of the advecting
fluid, K is the diffusion constant and/(J, x) is a given source term. Denote
by R(t, x; t0, x0) the solution of the homogeneous equation

with the initial condition

with T(t0) being the initial configuration of T at time t0.



Indeed, we may set /c = 0 in the phase space integral (2.6) and the
/j-integral gives then a delta function(al) concentrated on the Lagrangian
trajectory. For small positive K, on the other hand, R(t,x;t0, x0) is
the probability distribution function (p.d.f.) of the endpoint of a small
Brownian motion around the Lagrangian trajectory. Such a Brownian
motion X p ( t ; t 0 , x 0 ) with a drift is a solution of the stochastic ordinary
differential equation (ODE)
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There exists a functional integral formula for the evolution kernel
which, for sufficiently regular v, may be easily given a rigorous sense as an
integral with respect to the Wiener measure with density:

where x = (dx/dt). It will be useful to rewrite the above functional integral
as a phase space one:

with the Gaussian integral over the unconstrained paths s\-+p(s) repro-
ducing the previous integral. From the functional integral representations
it is clear that when K —> 0 then

where x(t; t0, x0) is the Lagrangian trajectory of the fluid particle satisfying
the equations

with /?(/) denoting the Brownian motion without drift. Thus

where E( •} denotes the expectation with respect to the Wiener measure
of/?. Equation (2.10) is another form of Eq. (2.5).

We shall be interested in the situation when both velocities v and
source / in Eq. (2.1) are random so that Eq. (2.1) is a stochastic PDE.



In order to solve such a stochastic equation, we should define the evolution
kernel R(t, x; t0, x0) as a random, y-dependent process or, in plain English,
be able to compute various expectation values of R's like
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where t = (/i,...,?„), \ = (xl,...,xa) and similarly for t0, x0 and where £(•)
denotes the expectation w.r.t. /?,-'s and v. It is clear from the second
expression for ^,(t, x; t0, x0) that it gives the joint p.d.f. of the ends
Xf^tii 'o, /. *o, /) of n Brownian motions (independent for given v) around
the Lagrangian trajectories starting at times ?0> / from points x0>,-. The K -» 0
limit of ^,(t, x; t0, x0) (if exists) should simply give the joint p.d.f. of the
endpoints *(/,-; /0>,-, x0 ,) of n Lagrangian trajectories.5

Let us assume that the velocity is a Gaussian stationary field with
mean zero and covariance

where tn = /, — t2, x{2 =Xi — x2 and daDai/i(t, x) = 0 to assure the incom-
pressibility. Employing the phase space path integral representation (2.6)
and performing the Gaussian functional integration over y, we obtain6

If, following Kraichnan,(18) we assume that v(t, x) is also decorrelated in
time, i.e., that

5 K.G. thanks Ya. Sinai for attracting his attention to the statistics of Lagrangian trajectories.
6 Similar expressions appeared in refs. 4 and 9.



It is easy to see that the right hand side is a phase space path integral
expression for the heat kernel (dynamical Green function) of the 2nd order
(positive, elliptic) differential operator

compare Eq. (2.6). Note that, due to incompressibility, there is no ordering
ambiguity in passing from the path integral to the expression for Jtn.
Rigorously minded person may take expressions (2.18) as defining the
evolution operators for the stochastic PDE equation (2.1) in the time
decorrelated case. Of course, the composition property (2.15) follows from
the semigroup law for the heat kernels.

Let us now go back to the passive scalar. Assume that both v and /
are independent stationary processes. Imposing also the zero initial condi-
tion for T at t0— — co, we obtain using Eq. (2.4) the following expression
for the correlators of T:
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then formula (2.13) for ^*(t, x; t0, x0) may be further simplified. Let as set
all t, equal to t and all t0i equal to ;0. We shall denote the corresponding
3Pn by $*(/, x; /„, x0) (the general case can be reconstructed from the special
one for v's delta-correlated in time). The fundamental property of the
p.d.f.'s 2Pn(t, x; ?„, x0) for the time-decorrelated velocities (not necessarily
Gaussian) is the composition property

From expression (2.13) we obtain, assuming relation (2.14),

i.e., that



where ((i is a positive definite test function. In this case and for the
Gaussian, time decorrelated velocities, Eqs. (2.19) simplify permitting an
inductive calculation of the stationary correlation functions of the scalar.
Let us see how this works for equal time correlators. We may consider only
the even-point functions of T, ,^n(x)s <T(/ , ,v,) • •• T(t, .v2n)>, since the
odd correlators of/vanish implying the same property of the T correlators.
For the 2-point function we obtain

The above equations permit an inductive calculation of the stationary
equal time correlation functions of T with the use of the (static) Green
functions ..#~l(\, y) of operators ,//„.
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It should be clear that if a stationary state of the scalar is generated for
large time and independent of the initial conditions (say, decaying at
infinity) then its correlation functions should be given by the above equa-
tion. Hence the importance of understanding the behavior of the p.d.f.'s
,^,(t, x ; t 0 ,x 0 ) .

Assume now that the source /(independent o f f ) is a Gaussian process
with mean zero and covariance

and for the 4-point function

Similar arguments for the 2«-point function give
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for small x . Here 0 < y ̂  2 is a fixed parameter. The tensorial form of
d*P(x) is fixed for small \x by the incompressibility condition
dad«fi(x) = Q:

where m is an infrared regulator. Relations (3.2) and (3.3) hold then for
m|x|«l. When w->0, d^(x} tends to the scaling form d'g(x) but ®0

diverges like &(mf~2).
The Gaussian distribution with covariance given by Eqs. (2.14) and

(3.1) is relatively far from a realistic description of the statistics of turbulent
flows. First, it excludes the velocity intermittency, i.e., more frequent
occurrence of large deviations of velocity differences than in the normal dis-
tribution. Such occurrence characterizes short scales in the inertial interval
of the turbulent cascade. Second, the time decorrelation is a brutal approxi-
mation since one observes scale-dependent time correlations in turbulent
flows. The power-law growth of the velocity difference covariance
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3. ZERO-MODE DOMINANCE

We shall be interested in the case where the spatial part 2^(x} of the
u-covariance has the form

where dxl3(x) scales with power 2 —y,

where D is a constant. For 0 < j < 2, one may take

mimics, however, the expected behavior in the turbulent cascade (the
Kolmogorov value of the scaling exponent corresponds to y = \ since time
appears to scale like length to power y in the model). The point is that even
the velocity distributions far from realistic, as the one described above,
induce strongly intermittent scalar distributions and the purpose of the



of scaling dimension —y. M™ is a positive singular elliptic differential
operator of the 2nd order in L2(Rd"). By a simple self-consistent analysis
one may convince oneself that, at least for y close to 2, e~'M»(x, y) and
M~l(\,y) converge pointwise when w-»0 and /c->0 to the heat kernel
e~M"(x, y) and the Green function (M^c)~' (x, y), respectively. The latter
should satisfy bounds that may be inferred from a semi-classical analysis of
the path integral expressions (2.16) with ®*$ replaced by d^ and K set to
zero.7 In the limit y->2, d^(x) tends for non-zero x to a constant times
S"P and M*° becomes proportional to the dn -dimensional Laplacian. When
y is close to 2, the heat kernel e~'M»(x, y) and the Green function
(M^0)"1 (x, y) differ little from the heat kernel and the Green function of

7 To our knowledge, such bounds have not been obtained in the mathematical literature and
constitute an open mathematical problem.
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Kraichnan model is to understand this phenomenon in the simplest con-
text.

Operators Jtn may be rewritten in the form

where the last term drops out in the action on translationally invariant
functions. We shall, somewhat pedantically, denote the operator Jtn acting
in the translational invariant sector by Mn. We shall view Mn as an
operator in the reduced space L2(Rd«), with dn = (n — 1) d. This is the space
of functions of the difference variables xin sxt — xn, square-integrable with
the measure d'x=dxin •••dx(n_l)n. The heat kernel of Mn,

with a = (a,..., a), gives the joint p.d.f. of the differences xin of the
Lagrangian trajectories starting at points x0 (or, equivalently, the joint
p.d.f. of the Lagrangian trajectories in the quasi-Lagrangian picture'2'). It
is translationally invariant separately in x and x0.

In the limit m -* 0 when d"ft(x) takes the scaling form (3.3) but 20
diverges, operator Mn, unlike Ma tends to the limit which for K = Q coin-
cides with the scaling operator



the Laplacian. In particular, e '^(x, y) is finite everywhere and
(M^)"1 (x, y) is infinite only when x = y. We expect this to hold for all
}»0. When 2 — y is small, the behaviors of (M®0)"1 (x, y) around x = y
and at infinity differ from those of the Green function of the <4-dimensional
Laplacian by 0(2 — y) modifications of the power laws. All that implies that
the pointwise limits m -> 0 and K -> 0 of the equal time correlators of T
given by Eqs. (2.23) exist, at least for y close to 2, and are given by the ver-
sion of the same equations employing the scaling Green functions
(M^cpv (x, y) (with rfy replaced by d'y). From now on, we shall deal only
with these limits and with the scaling operators M*° and shall drop the
superscript "sc."

We are interested in the behavior of the equal time correlators of T,
especially in their scaling properties, in the situation when the source acts
only on large distances, i.e., in our Gaussian model, when the spatial part
# of the co variance of /is almost constant. We may study this regime by
replacing f€(x] by ^L(x) = f^(x/L) and by examining the large L behavior
of the equal time correlators ^2n =^.n, L- The following result, which may
be referred to as the zero mode dominance, has been described in refs. 3
and 15: at y sufficiently close to 2 and at m, K — Q,
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[ • • • ] denotes terms which do not depend on at least one xt and as such
do not contribute to the correlation functions of scalar differences
<n,-(r(?,x,)-r(?,j , .))>.

where ff1 is the symmetrization operator. The contribution to ^°2n propor-
tional to 2 — y is also known up to [ • • • ] terms.'3' A similar analysis was
performed in refs. 5 and 7 for large space dimensions d.

The main implication of the relation (3.9) is the anomalous scaling of
the n > 1, y close to 2 structure functions S2n,L(x) = <.(T(t, x) - T(t, 0))2">.
At m,K = 0 and for \x\jL « 1,

for n > 1. Above, A,f is a non-universal amplitude (a constant depending on
the shape of the source covariance #) and p2n = (1n(n— l ) / ( d + 2 ) ) ( 2 — y) +
(9((2 — y}2) is a universal (i.e., 'if-independent) anomalous exponent. ^°2n is
the scaling (translationally invariant) zero mode of M2n,



where Sd» ' is composed of points x = x/Rn in the space Rd" of difference
variables. In the language of the Mellin transform, Nn becomes a family
Nn(ff) of operators in L2(Sd"~l). In particular,

8 Technically, Nn, as well as Mn, may be defined as the Friedrichs extension of its restriction
to smooth functions with compact support, vanishing around the diagonals .v, = Xj.
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The above behavior contradicts the simple dimensional prediction S2n(x) ~
\x\y" which holds only for the 2-point function.

Let us sketch the argument leading to the result (3.9), based on apply-
ing the Mellin transform to select the dominant contributions for large L.
It will be convenient to work with a version of operators Mn of scaling
dimension zero

where R2n =Z,<7(*/-*/)2- Nn is also a positive (unbounded) operator8 in
L2(Rd"). Since it commutes with the self-adjoint generator of dilations

it is partially diagonalized by the Mellin transform of the translationally
invariant functions

The map (3.15) is a unitary transformation, diagonalizing £>„, between

where the Mellin-transformed Green function Nni(ff',\, y) satisfies the
hermiticity relation
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It is a meromorphic function of a with simple poles for generic y. Around
the poles

where /j are the scaling zero modes of Mn of scaling dimension a, and g(

are similar modes with scaling dimensions —dn + y — ah both in L2(Sd*~').
Although operator Mn has continuous spectrum when considered as a
positive operator in L2(Rd"), it induces an operator Nn(a — (y/2)) in
L 2 ( S d " ~ { )  w i t h  a  d i s c r e t e  s p e c t r u m  w h e n  a c t i n g  o n  s c a l i n g  f u n c t i o n s  w i t h
a scaling dimension a. The scaling zero modes occur at discrete values a,
of a for which zero belongs to the spectrum.

It is easy to see from the inductive equations (2.23) that

and that, with the use of the Mellin transform, these equations may be
rewritten as

Shifting the integration contour to Re a = yn + 2 — C'(2 — y), we obtain

where the sum runs over the poles CT, in the strip

and the last term, suppressed for large L, comes from the shifted contour.
There are two types of poles: those coming from (^B_2, i ® ^ ) A and those
in the Green function N~l. The first ones contribute either to [ • • • ] or to
y(L-2 + 0(2-rt) in Eq. (3.9) and are not interesting for us (at least for y
close to 2). The second ones are related to the scaling zero modes of Mn,



see Eq. (3.18). Only rotationally invariant (if ̂  has the same property) zero
modes symmetric under permutations of points and square-integrable on
Sd«~l contribute to J^n L. Such zero modes may be studied for y close to
2 by perturbative analysis of discrete-spectrum operators Mn acting on
scaling functins or, equivalently, of operators Nn(a] acting in L2(Sd»~l).
(Recall that for y = 2, Mn becomes the (/„-dimensional Laplacian). The
result is that, for y close to 2, all but one zero modes in the strip (3.22) con-
tribute [ • • • ] terms. ^°2n is the exception and it has scaling dimension
Go = yn — p2n- We expect essentially the same picture with the zero mode
domination of correlation functions to persist for all y > 0. One of the open
problems is whether there are other non-[ • • • ] zero modes entering the
strip (3.22) for smaller y and whether, if they cross, they may produce pairs
of zero modes with complex scaling dimensions. For y = 0 the singularities
in the inverse symbols of operators Mn become strong enough to induce
continuous spectrum of operators Nn(a] and the picture of zero mode
dominance has to be somewhat modified.(1'24>

One may also read the C'(2 — y) contribution to the anomalous
exponent p2n from the (9((2 — y) In L) term in the expansion of ^2n,L mto
powers of 2 — y, similarly as in the e-expansion for critical phenomena one
obtains anomalous exponents from logarithmic divergences. In the latter
case, the renormalization group which exponentiates the divergent
logarithms provides an explanation why it is reasonable to extract informa-
tion from badly divergent expansions. In our argument, the Mellin trans-
form analysis played a similar role exponentiating the logarithms of L. One
may show"3' that there is an (inverse) renormalization group picture of the
advection problem hidden behind the above analogy. The renormalization
group for the passive scalar eliminates inductively the long-distance modes,
unlike in critical phenomena where it is based on subsequent elimination of
the short-distance degrees of freedom.

4. CONSERVED SCALING STRUCTURES

In view of the domination of the equal time correlators of the scalar
by the scaling zero modes of operators Mn, it is important to understand
the physical interpretation of such modes. It is, in fact, very simple:

zero modes are scaling structures preserved in mean by the flow.

Indeed, recall that e~'M»(x, x0) = Pn(t, x; 0, x0) and it describes the proba-
bility that the differences of n Lagrangian trajectories starting at time 0 from
points x0 are at time t equal to xin. The mean value of a translationally
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invariant function /(x) of positions of n fluid particles at time t is then
equal to

In fact, the story is a little bit more complicated. The zero modes with
Re <T, > —dn + y are true zero modes. However the ones with the real part
of their dimension ^—dn + y are not. For them, Mnf is a contact term
supported at the origin. Such contact terms may give non-zero contribu-
tions to the right hand side of Eq. (4.2) or to the boundary terms in the
integration by parts, depending on the interpretation. The zero modes with
the scaling dimensions belonging to the strip (3.22) are true zero modes
and hence they describe scaling structures of the flow conserved in mean.
As was mentioned before, the translationally invariant zero modes that are
square-integrable on Sd"~~l come in pairs (/,-, gt) corresponding to scaling
dimensions a( and — dn + y — at (we may assume that Reer^ —(dn/2) +
(y/2)). For y close to 2 there are no zero modes square integrable on Sd"~l

with dimensions in the strip — dn + y < Re<cr<0. We expect this to hold
for any y > 0. In that situation ft are the true zero modes and they have
non-negative real parts of the scaling dimension whereas g/ are the false
zero modes with real parts of dimension ^—dn + y and with Mn g/ being
contact terms. Our claim about the absence of zero modes in the strip
— rfn + y < Re <T < 0 may seem paradoxical if we recall that the multi-body
structure of operators Mn assures that zero modes of Mn_p are also
annihilated by Mn. Indeed,9 the (false) zero modes of Mn_p with Recr^
— dn_p + y may lie in the strip — (dn/2) + (y/2) < Re<r<0 . However, the
resulting zero modes of Mn are not in L2(Sd'~l) and do not contribute to

9 K. G. thanks E. Balkovsky, G. Kalkovich and V. Lebedev for a discussion of this point.

532 Bernard et al.

Differentiating the right hand side w.r.t. /, we obtain

where we have integrated by parts twice. If/ is a zero mode of Mn then the
right hand side vanishes and, consequently, the mean (4.1) is constant and



The behavior (4.6) characterizes a super-diffusion where the square distan-
ces between points grow faster than linearly in time. A slower behavior
requires vanishing of J /(x) e~TM"(x, 0) d'\. Note that the exponent of the
growth diverges when y -> 0.

It is easy to understand the origin of the behavior (4.6). The stochastic
process described by the probabilities Pn(i, x; 0, x0) = e~'M"(x, x0) may be
viewed as a diffusion with the diffusion coefficient proportional to the
power 2 — y of the distance between the particles. When particles separate
they diffuse faster and faster which results in the super-diffusive behavior
with mean distance square growing proportionally to r2/x. On the other
hand, on small distances the diffusion is slow and particles which get close
spend relatively long time together. Since </>0,x0 = /(xo)> tne time t after
which </>,,X o reaches, say, twice its original value behaves like C'(f(\0}yl"),
i.e., it goes slower to zero with the diminishing separation between the
initial points than for the standard diffusion at y = 2.

We have seen that the scaling zero modes of Mn correspond to conser-
ved collective modes of the super-diffusion with the transition probabilities
Pn(t, x; /0, x0). Existence of such conserved modes is nothing exceptional.
They are present already in the standard diffusion. For example,

822/90/3-4-2
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the poles of the Green function Nn '(x, y) and hence to the right hand side
of Eq. (3.21).

It should be stressed that the behavior (4.3) is atypical. For a general
translationally invariant, scaling function with (say, positive) dimension a
and for any time T > 0,

as it is easy to see with the use of the scaling property

It follows that, typically,



compare to Eq. (3.20). Pushing the integration contour more and more to
the right and using Eq. (3.18) to control the residues of the poles, we
obtain for y ̂  0 the asymptotic large L expansion:

with Reu,> —(dn/2) + (y/2) or, as we expect, with Recr,-^0. Although it
has a similar form to the eigenfunction expansion of an operator with dis-
crete spectrum, it has little to do with the spectral decomposition of M ~l.
Since Mn is a positive operator in L2(Rrf») with continuous spectrum coin-
ciding with the positive real line, the spectral decomposition of M"1 is a
continuous integral involving the generalized eigen-functions of Mn. The
scaling zero modes ft or gt of scaling dimensions at and —dn + y — <?,-,
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and is time independent, although j x^e'A(x, x0) d\ behaves like G(t).
Another example is

Under symmetrization, the first conserved mode vanishes whereas the
second one gives the zero mode of A whose (2 —y)-perturbation dominates
the 4-point function of the scalar for y close to 2.

5. SOME PHYSICS: SHORT-DISTANCE BEHAVIOR OF
FLUID PARTICLES

The zero mode dominance of the structure functions of the scalar is
due to the appearance of such modes in the asymptotics of the Green func-
tions M~'(x, y). Indeed, with the use of the Mellin transform, one may
write (in the reduced space):



where we have used the scaling property (5.3). The (reduced space) heat
kernel on the right hand side decays in L faster than any power for y / 0.

10 This analogy is somewhat loose, since the poles in a live in the first sheet, probably only
on the real axis.
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respectively, are square-integrable on Sd» l but are not generalized eigen-
functions of Mn (except for <J, = 0). They are rather analogous to resonan-
ces in many-body problems with the plane of complex a replacing that of
complex energies and a with real part equal to —(dn/2) corresponding to
real energies.10 Note that due to the hermiticity and to the overall scaling
of the Green function M~'(x, y),

the expansion (5.2) may be also rewritten as

so that the zero modes g, with the scaling dimensions — dn + y — af of real
part less than —(dn/2) + (y/2) (or even ^—dn + y) dominate the large
distance behavior of the Green function of Mn. Expansion (5.4) may be
also obtained directly from Eq. (5.1) by pushing the <r-integration contour
to the left.

It is not difficult to see directly that the functions /, appearing in
expansion (5.2) have to describe scaling structures conserved by the flow.
Indeed,

if we insert expansion (5.2) into the left hand side. But on the other hand,



Comparing the latter expression to relation (5.5), we infer that
9r J/,•(*) e~ tM»(x> x0) d'\ has to vanish and hence/,, a function with
scaling dimension a,, is conserved in mean by the Lagrangian flow. This
gives another proof of the statement (4.3).

Since the Green function is given by the time integral of the heat
kernel,

with Re PJ ̂  0, describing asymptotics of the probabilities that the
Lagrangian trajectories will come at time t close together. We could expect
that functions ^ are again zero modes of Mn. To verify whether this is the
case, consider the integral

The left hand side may be rewritten as

by changing variables xi-»Lx and using the scaling relations (4.5), the
composition law of heat kernels and, finally, the expansion (5.8). But
&j(t> y) should be smooth in t for t ^Q, oo. It then follows that
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one may also expect to see the zero modes in the asymptotic behavior of
the probabilities Pn(t, x; 0, x0) = e~'M"(x, x0). Assume an asymptotic
expansion



The right hand side becomes independent of T only approximately if
rL~y « 1. Comparing the asymptotic expansions (5.9) and (5.11), we infer
that the scaling functions of (of scaling dimension PJ) are not necessarily
preserved in mean by the Lagrangian flow. Instead, j ^7-(x) e~rM»(x, x0) d'\
is a pure polynomial in T. Note that the polynomial still grows slower than
the super-diffusive growth rpily since its order p satisfies the relation
PJ = PJ' + yp^yp where pf is a scaling dimension of some other tj>r. Hence
functions fy} describe slow collective modes of the super-diffusion.

It is not difficult to see how the slow modes are related to the zero
modes of operators Mn. Differentiating Eq. (5.8) over / we infer that

It follows that if the function ^ appears in the expansion (5.8) then also
Mn(f>j does. Since the scaling dimension of Mn<j>j is pj — y and only dimen-
sions with real part positive may appear, subsequent application of Mn to
a (f>j must produce a homogeneous zero mode of Mn after a finite number
of steps. Hence functions ^ must be organized into towers of descendants
(/>j<p based at zero modes/^-= <^,.>0 of Mn and satisfying the chain of equa-
tions
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The scaling dimension of <j>t p is (at + yp). Since M£+1^,-)P = 0, it follows
that the (p + l)th time derivative of

vanishes so that the above integral is a polynomial in r of degree p, in
accordance with the previous reasoning. Note that Eq. (5.12) implies that
the functions i//itp corresponding to (/>iip satisfy



Summarizing: the asymptotics of probabilities of the Lagrangian trajec-
tories to get close together is dominated by the towers of slow collective
modes of the super-diffusion:

Since />„(/, x; 0, x0) = Pn(t, x0; 0, x), expansion (5.16) may be also rewritten
as

The leading term corresponds to the constant zero mode. This term
dominates for large t if J /(x) e~rM«(x, 0) d'\ + 0. However if/ = </>, q then,
as we have seen above, <^ g),t Xn is a polynomial of order q in /. Conse-
quently, \ (/>itq(\) iA,-,p(T, x) d'\ has to vanish unless ((ai — at)ly) + q — p is
an integer between 0 and q. Hence <(/),, „ for/equal to a slow mode <j>ii?

with a positive scaling dimension is dominated by subleading terms on the
right hand side of Eq. (5.18).

To see the lower order terms11 for a generic scaling function / for
which </>,, X()~/CT/y, it is enough to compare the mean values </>,,Xo for
two different x0. For example, subtracting </>, x for two values of x0 t

11 K. G. thanks M. Vergassola for the discussion of this point.
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giving the asymptotics of the probabilities of the Lagrangian trajectories
starting very close. The leading term on the right hand side is equal to
•Ao,o('' x) = e~'M"(x, 0) and it corresponds to the constant zero mode
<?Vo = /o= 1-

The above results have an important physical significance for the
dynamics of the scalar. Recall the expression (4.4) for the time-dependence
of the mean value </>, XQ of a function / of scaling dimension a. Inserting
the relation (5.17) to the right hand side of Eq. (4.4) we obtain the
asymptotic expansion of </>,iXo for large V.



where the primed sum omits the contributions of the slow modes which do
not depend on all variables. Hence the non-constant slow modes dominate
the relative motion of groups of Lagrangian trajectories starting from dif-
ferent initial configurations. In particular, the relative motion is slower
than the super-diffusive spread of the trajectories. This supports the inter-
pretation of the slow modes as resonance-type objects in the motion of
Lagrangian trajectories. The slow modes depending on less variables
correspond to resonances in fewer-particle channels which drop out under
the subtractions.

Denote by Xn the natural logarithm of operator Mn: Xn = In Mn. Xn is an
unbounded self-adjoint operator on 3f with the domain invariant under aUs
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gets rid of the contribution of the constant mode. Denote by Syo m ^ m the
operator which performs the subtraction on functions h of x0 m:'

Subtracting subsequently at two different values of x0<m for m = I,..., n — l,
and setting U"m~Ji <^0. m, x,, m = <V / • we obtain

6. SOME MATHEMATICS: STRUCTURE OF THE
MULTI-BODY OPERATORS Mn

To understand analytically the origin of the asymptotic expansion
(5.16), let us examine more closely operators Mn. We shall work in the
reduced space JT = L2(Rrf»). Mn is a positive, unbounded, self-adjoint
operator in 3C. Let

Operators ^ form a unitary version of the 1-parameter group of dilations
in Jf with the self-adjoint operator £>„ of Eq. (3.14) as its generator:

°US preserve the domain of Mn and



used before, with Nn an operator commuting with £>„? The comparison of
the two equations gives
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and the whole real line as the spectrum. The relation (6.3) is equivalent to

i.e., to a strong form of the canonical commutation relation

Since under the Mellin transform (3.15) Dn becomes the multiplication
operator by (l/i)(er + (dn/2)), Xn must be unitarily equivalent to yda by vir-
tue of the von Neumann Theorem on representations of the canonical com-
mutation relations. More exactly, there exists a one-parameter family
On(ff), Re 0-= —dn/2, of unitary operators in L2(Sd"~l), unique modulo a
right multiplication by a ^-independent unitary operator, such that

for Reer= —dJ2. Equivalently,

or, noting that the operator da corresponds to the multiplication by
— In Rn in the language of the original functions,

where

This is the promised structural result about operators Mn. For the heat
kernels, we obtain

What is the relation of the expression (6.8) to the representation



If Nn l(a — y/2) has a pole, see Eq. (3.18), then the simplest possibility
is that either £/„(<?/ —y) is regular and then
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Let us suppose that the family of operators Un(a) has a meromorphic
continuation to the complex plane of a with no poles in the strip

(this will prove consistent with our zero mode analysis). Then Rn y/2UnR7n/2
becomes under the Mellin transform the operator

The unitarity of (Jn for Re <r= —dn/2 implies that

and that U l(a) also possesses a meromorphic continuation. Operator
R^2V~lR~vl2 becomes U~l(a-y/2) under the Mellin transform and
Eq. (6.12) gives rise to the relation

when a-> at or &„(<?/) is regular and

with (g,\ On(ff — y) = &(eT — a,). In the last case, multiplying by
Qn(-dn-at)* from the left and by 0H(-dn-a + y)* = G~\a-y} from
the right hand side and taking adjoints, we obtain
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i.e., relation (6.16) for at replaced by — dn + y — at and corresponding to the
twin zero mode gt of/,. We expect the behavior (6.16) if/,- is less singular
at the origin than g/ and the behavior (6.17) in the opposite case (in
Appendix A, this is established for U2). Rewrite Eq. (6.15) as

Assume that Nn '(u, + y(p — |)) is regular for p = 1, 2,..., (i.e., that there are
no zero modes of Mn (square-integrable on Sd"~l) with scaling dimensions
differing by multiplicity of y. This should hold for generic y. From
Eq. (6.19) for p = 1 and from relation (6.16) we infer that

for a -> (jj. By induction on p, it follows then that

where

Note that Eqs. (6.22) may be rewritten as the chain of relations (5.13) for
the scaling functions </>,• p(\) = Ra

ni
+'"'(t>itp(x) where <^,-0s/. is the zero

mode of Mn of scaling dimension at. By virtue of the assumption that there
are no zero modes of Mn of scaling dimension cr, + yp, the tower of des-
cendants </>iip is uniquely determined12 for each zero mode/..

For / a test function vanishing near the origin, Eq. (6.10) may be
rewritten as

12 For non-generic y the situation may be slightly more complicated with mixing of different
towers.



By moving the er-integration contour further and further to the right,13 we
obtain from Eq. (6.24) the asymptotic expansion

Eq. (6.25) is an integrated version of expansion (5.16) (at least for y close
to 2, there are no scaling zero modes square-integrable on Sd* ~' with
— dn < Re cr, < 0 and, as mentioned before, we expect this to hold for all
positive y}.

7. LAGRANGIAN FLOW

The study of the statistics of lagrangian trajectories has a long history,
see e.g., refs. 21 and 23. There are, however, some subtle but important
points which, to our knowledge, have not been stressed before and which

13 Note that the poles of the /"-function do not contribute.
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After shifting the (/-integration contour infinitesimaly to the left we may
perform the /l-integral. The inverse Mellin transform of the resulting expres-
sion gives

where the sum is over scaling dimensions of zero modes of Mn satisfying
Re cr:> —djl and where



the above discussion of the motion of fluid particles allows to elucidate.
When stating that, for m,K = 0, Pn(t,x;Q,\0) is the joint p.d.f. of the
differences of the endpoints of « Lagrangian trajectories, we have silently
assumed that such trajectories, or at least their differences, make sense as
random processes defining the Lagrangian flow on the probability space of
y's. A straightforward consequence of such an assumption is the relation

where x' =(xl,...,xk) and similarly for x'0. Eq. (7.1) expresses the elemen-
tary property that the joint p.d.f. of coinciding random variables is concen-
trated on the diagonal. In particular, Pn(t, x; 0, 0) should be proportional
to the dn-dimensional delta-function. But the heat kernels e~'M"(\, x0) do
not have this property at least for y close to 2 and, expectedly, for all y > 0.
Instead they are regular when x0 -* 0. How exactly Pn(t, x; 0, x0/L) fails to
become the delta-function when L goes to infinity is described by the
asymptotics (5.17) dominated by the slow collective modes of the stochastic
evolution of the Lagrangian trajectories. Hence, even if all joint p.d.f.'s Pn

of the differences of Lagrangian trajectories make sense as given by the
m, K = Q heat kernels e~(Af"(x, x0), the differences of Lagrangian trajectories
do not exist as random processes for y>0. Note that for K positive we
should not expect the behavior (7.1) since the Brownian motions starting
from x0i, are different for different /"s even if they wiggle around the same
Lagrangian trajectory. The system behaves as if the wigglings were present
even for «r = 0 (see more on that below).

The y = 0 and m, K = 0 case will be analyzed in Sects. 8 and 9 and was
previously considered in refs. 19, 25 and 26 to ref. 12. The p.d.f.
P2(t, x; 0, x0) = e~'M*(x, x0) of the difference Xi2(t) = x(t) of two
Lagrangian trajectories may be easily computed in this case and the result
is the log-normal distribution'6'8| 19)

where r=\x\, x = x/r and similarly for r0,x0. k,(x,x0) denotes the heat
kernel on the unit sphere in d dimensions and it drops out in the rota-
tionally invariant sector. The most important consequence of Eq. (7.2) is
that 1/t In(r/r0) is a Gaussian variable with covariance 2D/t tending to zero
at large times and with mean Dd. The mean gives the Lyapunov exponent
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i.e., the rate of exponential growth in time of the distance r between the
Lagrangian trajectories. Note that

which should be contrasted with the super-diffusive behavior for y > 0
described by Eq. (4.6). More generally,

For any test function/and for fixed t, the right hand side tends to/(0)
when r0 -»0, in accordance with the relation (7.1) and unlike for y > 0. As
it is easy to see from the above integral (or from Eq. (7.2)), the concentra-
tion of the p.d.f. P2(t, x; 0, x0) within r < rj is visible ifr/y> e'Ddr0. For later
use, note that for a small but non-zero r0 and for a rotationally invariant
test function /,

The approach of refs. 6 and 8 was based on the observation that at
y = 0 the 2-point function of the velocity differences becomes

In particular, the first derivatives of v have space-independent correlations.
In other words, we may set
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where Xx/i(t) is a Gaussian process with values in traceless matrices with
mean zero and the 2-point function

obtained by differentiating twice the right hand side of (7.6). It is easy to
check directly that the above covariance is positive and that it is invariant
under the adjoint action of O(d), i.e., that X and kXk~l have the same
covariance for keO(d). Eqs. (7.7) are equalities between Gaussian pro-
cesses. Physically, they mean that for m = 0 and y = 0 the velocity flow acts
as a uniform, volume preserving strain and rotation, as far as the relative
motions of fluid particles are concerned. The difference of two Lagrangian
trajectories x l 2 ( t ) = x(t) should satisfy the linear (stochastic) ODE

with a solution given formally by

where gti ,o is the time-ordered exponential of an integral of independent
matrices,

of the type similar to the ones that appears in the theorems on products of
independent equally distributed matrices'11' or in the one-dimensional
Anderson localization.'16' The point is that glilo may be defined as a ran-
dom Markov process (a diffusion) with values in SL(d). It has three basic
properties:

1. ghj(( and g,2+T, ,l+r have the same distribution,

2- g,2,tfStf, <0 = g,2, r0 a.e.,
3. g,.,o is independent of go- if ( t 0 , t ) n ( t ' 0 , t ' ) = 0.

To define such a process, it is enough to give the (transition) probability
distributions p,-,0(g)dg of g,_,o (dg denotes the Haar measure on SL(d))
satisfying the composition law:



for translationally invariant / In fact, the above integrals uniquely deter-
mine p,.

One of the consequences of the relation (7.14), closely related to the
property (7.1), is that, for y = 0, the stochastic evolution of the scalar T
defined by the m, K = 0 flow preserves the Gibbs measure formally given as
e"^7"2 Z) I/normalization. Indeed, the 2«-point function of the scalar in
this measure is
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The 5O(of)-invariance of the Lie-algebra-valued process A" imposes also the
relation

In Sect. 8 we identify p, with the heat kernel of a certain operator on
SL(d).

The net outcome of that analysis is that for y = 0, unlike for y > 0, the
differences of Lagrangian trajectories xtj(t) = g, /ox0>,-,. are well defined
random variables. In particular, the knowledge of p, is all that is needed to
compute the joint p.d.f.'s of xtj(t):

(the odd functions vanish). But Eq. (7.14) implies the relation

i.e., the time invariance of the Gibbs measure correlations for y = 0. This
should be contrasted with the behavior for the y > 0 case where the flux of
the scalar energy towards high wavenumbers destroys the invariance of the
Gibbs measure, see ref. 14. For y = 0, the invariant Gibbs measure is
nevertheless unstable under perturbations, as follows from relation (7.5).
It has also little to do with the K -»0 limit of the stationary state of the
scalar obtained in the presence of large scale forcing. The latter will be con-
structed in Sect. 9.

The mathematics of the difference between the y = 0 and y > 0 cases is
simple. Eq. (2.8) requires that v(t, x) be Lipschitz in x for the uniqueness



of solutions.14 But the Gaussian y-measure with 2-point function (3.4) lives
on v's which are Holder in x with exponent (2 — y)/2 (modulo logarithmic
corrections) but not Lipschitz, except for y = 0 where the velocity differen-
ces become smooth, as we have seen above. Hence, one should not expect
uniqueness of Lagrangian trajectories even if the probabilistic description
of them may be maintained but with violation of the property (7.1). Physi-
cally,15 the velocity covariance should be smoothed on the dissipative scale
rj due to viscous effects so that it behaves as ~D^~V2 for r«r\, i.e., like
the y = 0 covariance with D increased to Dr\~y. The Lagrangian trajectories
diverge now exponentially in time as long as their distance is « t j . Note,
however, that for arbitrary small but fixed r0 = x0\ one never sees concen-
tration of the p.d.f. P2(t, x; 0, x0) on scales smaller than // if 77 <e(!'("r'V0,
i.e., for r; sufficiently small. This explains in more physical terms why rela-
tion (7.1) fails when 77-> 0 for y>0. The exponential divergence of trajec-
tories closer than rj makes it impossible to maintain the concept of
(differences of) individual trajectories in the inviscid limit rj-*Q. Instead,
we should talk about the y-dependent p.d.f. Pn(t, x; 0, \0\v) whose average
over the velocity ensemble reproduces Pn(t, x; 0, x0). It is worth noting that
for positive diffusivity K, when the deterministic equation (2.8) should be
replaced by the stochastic ODE (2.9), although the problems with the non-
uniqueness of the solutions persist, there exists a rigorous probabilistic
treatment16 allowing to define uniquely the transition probabilities
Pn(t, x; 0, \0\v) for Holder continuous velocities.'271 Our analysis calls for
an extension of such a treatment to the K = 0 case.

8. ADVECTIOIM BY SMOOTH VELOCITIES AND
HARMONIC ANALYSIS

When 7 = 0 and m,K = 0, the Kraichnan model becomes exactly
solvable as we will show now. That simplifications occur in this case has
been noted before, see refs. 24 and 25 to ref. 10. Our analysis is based on
some observations by Shraiman and Siggia.(24'26) As was noted in ref. 24
and in ref. 26, for y = 0 the model has extra symmetries. The operators Mn

can be expressed in terms of the quadratic Casimir operators correspond-
ing to an action of the groups SL(d) and SO(d) on the correlation func-
tions. Let us explain what this means.

The group SL(d) of real matrices of determinant 1 acts on functions
/on Rd on the left by (Lgf)(x) = f ( g ~ 1 x ) . The infinitesimal form of this

14 Recall the existence of two solutions with vanishing initial condition: x = ((y/1) I)21"1 and
x = 0, for the equation x = ,v(2 ~ rt/2.

15 K. G. thanks G. Falkovich for a discussion of this point.
16 We thank G. Eyink for pointing this out to us.
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By definition of the action (8.2), the same formula holds also when we
express Mn in terms of the n — 1 difference variables. In particular for M2,
the Casimirs H2 and J2 correspond to the action of SL(d) and SO(d) on
functions f(x) of the difference variable x = xl2- In this case, we may
diagonalize H2 by the Mellin transform/(x) -»/(a, x) = J^° r ~ ° - l f ( r x ) dr.

with Re a = — d/2. It follows, in particular, that the spectrum H2 acting in
L2(Rd) is ]-oo, -d(d-l)/4] and that of M2 is [Dd2/4, oo[. Denoting
e~'j2 = k,, we obtain

822/90/3-4-3
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action is given by (d/dt)\l=0LeiAf = AftaHaiff where A is a traceless matrix
(i.e., in the Lie algebra of SL(d)) and the generators H^ are

Similarity, on functions of n Rd variables (x1,...,xn) = x, we have the
(diagonal) action

with generators H^ = '£i(—x'*dxii + (\/d)da,pXyidxyi). The quadratic
Casimir of SL(d) is in terms of these generators

fhe generators of the action of the SO(d) subgroup are J^ = Hap — h^ and
he corresponding quadratic Casimir is

The observation of Shraiman and Siggia was that when y, m = 0 in the
velocity covariance da/> (3.3), the operator Mn = Y,t<jdCLls(xi-Xj)dx*dxt
becomes
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where we have performed the Gaussian integral over a. The result (7.2)
readily follows. Taking f(x) = '£L(r)=('tf(r/L) with f& the rotationally
invariant forcing covariance, we obtain by integrating over t the expression
for the 2-point function of T at y = 0:

Clearly ^.,L(X) is smooth for x/0 and

In order to solve Eqs. (2.23) for the higher-point functions of T we
need a representation for the Green function M~l. This is obtained by
relating H2 and J2 to the Casimirs Jf2 and /2 of the left action of SL(d)
and of SO(d) on functions Fon SL(d), given by (^gF)(h) = F(g~lh), or in
the infinitesimal form by (d/dt)\, = 0^>e,AF=Afta-JHf!tpF. Note that J^ are
skew-adjoint in the regular representation and that

is a positive elliptic operator in L2(dg}. In particular, it has the heat kernel



Clearly the basic properties (7.12) and (7.13) of the p.d.f. p, follow. In other
words, we may identify g, ,o as the diffusion process on group SL(d) with
the generator equal to (DJ(d- l ) ) [ ( d + 1) /2-dJf2].

Integrating the relation (8.14) over t we infer that

where g0 = e and $(g, h) = \SO(d) &(g, kh) dk. The last equality follows
by substituting gi = klg\, g2 = klk2g'2, gn = kl • • • k n g ' n , and using
9(kgl,kg2) = 9(gl, g2) and V(kx) = V(x).
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satisfying \jrt(g,h)dh=\ and jri(g,h) = Wkg,kh) = Jri(ggl,hgl) for
k e SO(d) and g' e SL(d). Assign to a translationally invariant function/(x)
and to x a function F x ( g ) = f ( g \ ) on SL(d). The linear map /i—»F inter-
twines the two actions of SL(d):

It follows that

Comparing the above relation to Eq. (7.14) we conclude that

where ^ is the integral kernel o f ( ( D / ( d - l ) ) [ ( d + 1 ) /2-dJf2])-'. Applying
iteratively identity (8.16) to Eq. (2.23) we end up with the expression

where the sum runs through all ordered pairingsp = ( { / , , 7,},..., {;'„, jn]) of
{ l - - - 2 n } , a p = (x,lJt,..., xUn) and
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The final reduction consists of identifying ^ with the Green function
of the Laplace-Beltrami operator A on the homogeneous space Hd =
SL(d)/SO(d). By definition, A coincides with the Casimir \JC2 if we view
functions on Hd as functions on SL(d) right-invariant under the action of
SO(d). Assign to a function / on Hd the function gt—>f(g} = f(g~*).
Clearly f(kg)=f(g] and (^gf}(h'l}=f(hg} = (0ij)(h}, i.e., the map

/i—>f intertwines the action of SL(d) on the functions on Hd with the right
regular action of SL(d). Since the quadratic Casimirs of SL(d) in the left-
regular and in the right-regular representations coincide and /2 vanishes
in the action on / we infer that

and that

where the function G(g,h] on Hd x Hd represents the kernel of the operator
(-D'A)'1 where D' = (2Dd/(d-1)). Thus $(g, h) = G(g~\ h~l) and
Eq. (8.18) becomes

Every matrix geSL(d) can be uniquely represented as a product (the
so called Iwasawa decomposition) g = nak where keSO(d), n is upper tri-
angular with 1 on the diagonal and a is diagonal with positive entries. Thus
one may parametrize the cosets gSO(d) by na. For d = 2 we may write
a = diag(j'/2, y"l/2), y>Q,n = (l0xl), xeR. The Haar measure dg becomes
dg = y~2 dx dy dk. The homogeneous space H2 may be identified with the
upper half-plane H= {z = x + iyeC j > 0}. The action of SL(2) on H is
given by the Mobius transformations ( " j ) z = (az + b)/(cz + d). Since ki = i,
the identification maps the coset gSO(2) to gi = nai. We shall denote
na = g(z) = (y£ yy '?*). The SL(2(-invariant measure on H is dv(z) =
y"2 dx dy and the Laplace-Beltrami operator becomes

The Green function G is given by the explicit expression:



and dg = e * f dzd/]d.\l dx2d.\3dk. There does not seem to exist a very
explicit expression for G in d>2. However, the singular behavior of J^M

can be extracted again, see Appendix B.
Let us end this section by deriving the formula for the Lyapunov

exponents of the Lagrangian trajectories, previously found in ref. 12 by
path-integral techniques. In ref. 24 it was observed that Mn may be also
expressed using the quadratic Casimir of the action of SL(n — 1) with the
generators
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Eq. (8.21) may now be rewritten as

G is (proportional to) the Green function of the Laplace-Beltrami operator
A on SL(d)/SO(d}. Explicitly, for d=3 write 0 = |<x diag( 1, - 1, 0) +
l^diagd, 1, -2). Then

with -0 = /. In Appendix B we study the integrals (8.24) in more detail. In
particular we show that the leading singularities at coinciding points of the
correlation functions of T are given by a Gaussian expression, a sum of
products of 2-point functions, confirming the analysis of refs. 1 and 6.

For the dimension d> 2 one can proceed analogously. In the Iwasawa
decomposition we parametrize n by the off-diagonal entries, .va,
a=l,..., (d2-d)/2, and write a = ^, 0 = diag(^lv.., tf>d) with £,•</>,• = (). The
Haar measure becomes in these variables

for l^i, j^n—l. This action corresponds to the natural action of
SL(n — 1) on the /-index of xin=xt — xn. Denoting by G2 the quadratic
Casimir ^jGyGj and by A the generator of dilations xf dx* one
obtains*24'



Let p denote the volume spanned by vectors xin, i= 1,..., n — 1, describing
the time t differences of the Lagrangian trajectories starting at time zero
from points x0:
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We would like to find the p.d.f. of p. Note that for a function/(p),

This follows from Eq. (8.28) since p is SL(n — 1)- and 5O(rf)-invariant.
Hence Mn preserves the space of functions f ( p ) . Also

where const. = J 8(p — 1) Tl/dxin. Hence Mn in the action on f ( p ) is
diagonalized by the Mellin transform f(p) ->/(<r) = j£° p ~ a ~ l f ( p ) dp
(unitary for Re a= —d/2):

As in Eq. (8.7), we obtain

Hence (l/t) In p is a Gaussian variable with covariance 2D(n)/t tending to
zero at large times and with mean D(n) d which, by definition, is the sum of
the (n — 1) largest Lyapunov exponents describing the effective separation of
« Lagrangian trajectories. We infer that the «th Lyapunov exponent is



with d exponents equally spaced and symmetric with respect to the origin,
confirming the result of ref. 12.

Noting that all pairings give the same contribution to the xt integral and
that there are (2«)!/2" of them we get

is a non-negative function on Hd bounded by Vx(e) = 5^(0)( j /)2. Eq. (9.2)
may be rewritten in the operator language as (D' =2Dd/(d— 1))
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9. QUADRATURE OF THE y = 0 CASE

Let us explicitly construct the stationary state of the passive scalar
advected by smooth Gaussian velocity with 2-point function (7.6). Relations
(8.17) and (8.21) allow to write a compact expression for the generating func-
tion of the y = 0 theory:

where

The sum on the right hand side involves the Neuman series for the
operator ( — D'd+ Vx)~

l, i.e., for the Laplacian on Hd perturbed by a
potential. Resumming the series we obtain

which is an explicit expression for the characteristic functional of the
stationary state of the y = 0 Kraichnan model.



which is finite for test functions % e.g., from the Schwartz space £f(Rd), see
Eq. (8.8).

0 defines a continuous positive-definite functional on ^(R''). The
continuity of <P(x) w.r.t. /e^R"') is easy: it follows by the Dominated
Convergence Theorem from the Feynman-Kac representation of the per-
turbed Green function:
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Let us see that the right hand side of Eq. (9.5) makes sense. Using the
Feynman-Kac formula expressing the perturbed heat kernel as an expecta-
tion Eg( •) with respect to the Brownian motion on Hd with transition
amplitudes Q~D'A(g, h), starting at time zero at g:

we infer the bounds

Since

it follows that the latter integral is bounded by the smeared 2-point function

The positive definiteness:

is a little bit more complicated. Let us sketch its proof. Define first the
positive definite characteristic functional

of the time t (quasi-Lagrangian) state of the scalar where T(t, x) =
|o/(5' 87,1x)ds is a functional of the forcing / and of g,jS. The above



relate <t>(%) to the long time behavior of the diffusion on the homogeneous
space Hd in the presence of a positive potential Vx or to the low-energy
properties of the Schrodinger operator — D'A+VX. They imply that
0^ $(/)<!. Expressions (9.17) may also be obtained directly in the
Martin-Siggia-Rose (MSR)(20) formal functional integral approach.

By Minlos Theorem, the normalized (0(0) = 1), continuous, positive-
definite functional <P on £^(Rd) given by Eqs. (9.5) or (9.17) defines a
unique probability measure d/u on £/"(Rd) s.t.
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expression for T(t, x) is obtained for the initial condition vanishing at
?0 = 0 in Eq. (2.4). The expectation in (9.13) is w.r.t. the Gaussian measure
of the forcing and w.r.t. the measure of the diffusion process g,iS. It is easy
to see that j T(t, x)x(x)dx is square-integrable with respect to these
measures. Performing the integration with respect to/ we obtain

The remaining expectation over g,, is easy to calculate by expanding the
exponential (the resulting series of expectations converges absolutely for
finite t). The result is

Using the bound (9.7), it is easy to see that <P,(x) converge to £>(/) when
?-> oo. Hence the positive definiteness of <P. Note that Eq. (9.15) may be
rewritten by integration by parts and the Feynman-Kac formula (9.6) as

which follows also directly from Eq. (9.14) if we notice that the diffusion
process s(->#,_ ,_ s on SL(d) projects to the Brownian motion on Hd. The
resulting alternative expressions for <t>:

dfj. is the stationary state of the Kraichnan model for y = 0 alluded to in
Sect. 7. It is quite different from the Gibbs measure and quite non-Gaussian



diverge logarithmically at coinciding points. The measure dfj. contains all
the joint p.d.f.'s of smeared scalar values j T(x) %(x) dx. In particular, the
function p*-^>0(px), is the Fourier transform of the p.d.f. px(0) of
j T(x) x(x) dx whose behavior was studied in ref. 10, see also refs. 6, 8, and 25.

<P(PX) is a pointwise limit of the finite-time functions <P,(px) which are
entire in p. For Re p2 ^ — b2, b> 0,

The Schrodinger operator — D'A — b2Vx with a negative potential may
develop bound states. The right hand side of the inequality (9.20) grows
with t since the expression under the integrals is positive. If eb =
inf{spec( — D'A — h2Vx)} <0 then the growth is unbounded since
es(D'A + b2y*\e, h)~Q-seb for large s. On the other hand, for eb>0 the right
hand side of (9.20) would be bounded uniformly in t if Vx were of compact
support on Hd. Vx, however, does not have a compact support as a func-
tion on Hd even if # and % do (if they do not vanish identically). It is,
nevertheless, easy to see from the definition (9.3) that Vx vanishes at
infinity of Hd, i.e., that it gets arbitrarily small outside sufficiently big com-
pact subsets of Hd. This is enough to assure a uniform bound for the right
hand side of (9.20) as may be seen by the following argument which
separates the behavior at infinity of Hd from that in the interior. Write
vx = v'x + v"x wnere Q^v'x^vx and v'x have a compact support. By the
Holder inequality,
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and is, indeed, supported by distributional configurations of the scalar
since the correlation functions

If we choose e small so that for b' = (\ +s)l/2b the relation eb,>0 still
holds then the first expectation on the right hand side of inequality (9.21)
is bounded uniformly in / (eb increases with decrease of Vx). Choose the



and the last expression is bounded uniformly in t as may be easily seen
from Eq. (8.7).

We infer that <P(px}, as a limit of uniformly bounded analytic func-
tions, is analytic in p for Re p2 > b% but has a singularity at p = + ib0 where
b0 is the positive number s.t. eb = 0. The Cauchy bounds imply now that

for \6\^6(\) and any positive e. Clearly, the same inequality fails for
negative e since it would imply analyticity of <I>(px) at p = + ib0. In short:
the p.d.f. px(6) of j T(x) %(x) dx has an exponential decay for large \8\ with
the rate t>0 equal to the value of b at which the ground state of
— D'A — b2Vx crosses zero energy. Note that the rate b0, as related to a
bound state energy is not, in general, a semi-classical quantity.

For rotationally invariant % which, for simplicity, we shall normalize so
that | / = 1, our operators on Hd reduce to the ones on the double coset space
SO(d)\SL(d)/SO(d). This space may be identified with the Cartan algebra of
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support of V'x so that ((1 +e)/e) b2V"x<v0<(Dd2/4) where v0 is a constant.
Then

in any strip |Im p\ < b0 — & for e > 0. Note also that lim^_ „ &(p%) = 0 by
virtue of Eq. (9.17). Since

it is easy to show integrating by parts few times and moving the /?-integra-
tion contour to lmp= ±(b0 — s) that px(0) is smooth except, possibly, at
6 = 0 and that



acting in L2(n?~' d</>,). The constant d(d2 - l)/24, equal to the half length
squared of the Weyl vector of SL(d), is the infimum of the spectrum of
-A(22) so that eb^(D'd(d2-l)/24)-b2Vx(Q). Note that, for d>2,
d(d2 — l)/24 is higher than the infimum of the spectrum of —\H2 acting in
L2(Rd) since, as pointed out in the remark after Eq. (8.6), the latter is equal
to d(d—\)/%. This discrepancy is due to the appearence of different
irreducible representations in the decomposition of the actions of SL(d) in
L2(Hd] and in L2(Rrf) for d>2 and it will play an important role below.
When the forcing covariance (6'(r] is essentially constant for r<L and is
falling off to zero for r » L (e.g., for f£(r) replaced by (€L(r) = (£(rjL}} then
the potential —b2Vx approaches for L -> oc a constant equal to —^b2f£(0)
so that for large L we obtain ^bl'K(O) ^(D'd(d2- l)/24) or

Note however that although b0 stabilizes when L -> GO, the right hand side
of Eq. (9.20) tends to e'1/2"*^01 and blows up with t.

The exponential decay of the scalar p.d.f. for y = 0 in the isotropic two-
dimensional situation was first found in ref. 6, see also ref. 25 for a discus-
sion of the non-isotropic case. The calculation of ref. 6 was extended to
higher dimensions in ref. 8. Both calculations were reinterpreted in ref. 10
within the semiclassical approach. Our rigorous result about the decay rate
b0 of px(0) disagrees for d>2 with the result of ref. 8 and with the instan-
ton calculation of ref. 10. These papers obtain the value b'Q = d^/D/2(6'(0)
for the decay rate which is smaller than b0 for d > 2. The point is that in
refs. 6 and 8 the function Vx(g) of Eq. (9.3) was replaced by Vx(g) =
\($(g~lx) with fixed x^O. This simplifies the calculation of the expressions
of Eq. (9.17) since only the distribution of g,-sx for one x is needed. They
become
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SL(d) divided by the action of the Weyl group and may be parametrized by
the diagonal matrices diag(</>lv.., (/>d) with entries (/>{^ ••• ^0rf and s.t.
Si^i = 0- In this parametrization, the Schrodinger operator —D'd + b2Vx

becomes the Calogero-Sutherland Hamiltonian'22-28' with a potential:



and lead to the quantum mechanical problem analyzed in refs. 6 and 8.
Upon the replacement of Vx by p2Vx one obtains a function <P'x(p) whose
first singularity off the real axis is at p = ± ib with b s.t. the ground state
of M2 — \b2($ crosses zero energy. Since the spectrum of M2 starts from
Dd2/4, see the remark after Eq. (8.6), we indeed obtain, for ^ = ̂ L and
large L, the exponential decay rate b'0 for the Fourier transform of <P'x(p).
The technical reason for the discrepancy with our exact calculation is that
Vx(g), unlike its smeared version Vx(g), does not vanish at the infinity of
Hd and leads to a more singular behavior of the right hand side of
Eq. (9.20). Another way to see it17 is that <P'X is given by a version of
Eq. (9.1) with | O^*,-) dx, omitted and with F^fu^) replaced by the parti-
tion-independent contribution F2n(x,..., x) corresponding the collinear
configuration u^, giving the most singular behavior when up -> 0 (see
Appendix B). The smearing in Eq. (9.1) makes this behavior more regular.
Our result persists, however, also if we replace Vx(g) with V^(g) =
51 <&(g~lx) ijj(x) dx, if \l> and ^ are non-negative function from £f(Rd),
since V$(g) still vanishes at infinity. In particular, if/ may vanish around the
origin which shows that it is the smearing of collinearity, not the inclusion
of coinciding points, which is responsible for the discrepancy between b0

and b'Q. The lesson is that the correlation of (non-collinear pairs of)
Lagrangian trajectories renders the smeared scalar less intermittent in more
than two dimensions and should not be neglected.

It is easy to see that <f>(px) decays exponentially for large real p.
Denote by T the first exit time of the Brownian motion on Hd from a fixed
neighborhood of e. The probability of a given value of T is bounded by
e-const./r Since |/=|« yx(h(s)) ds ̂  const. T, the conditional expectation
Ee(e-p2y\r) is bounded by e-const-A. Hence the exponential decay of
£e(e-/>2x)<|"e-conat-(^T+1/r)flfT. A more exact description of the decay
follows from the path-integral integral representation of the expectation
(9.17). The latter implies that the large p behavior of <J>(px) for real p,
unlike the large 6 behavior of px(6), is semi-classical:

Slow Modes in Passive Advection 561

where [0, co] i-> g(s) describes a trajectory (instanton) in Hd minimizing
the action

17 We thank M. Chertkov for suggesting this interpretation.



where <j> = (j>2 — <j>i. For ^ ( r ) approximately constant up to r^L, Vx((f>) is
approximately constant up to ^^InL and then it decays to zero like
~e~^2. Consequently, the exponential decay rate of <t>(px) is
approximately In L ,yV(0)/2Z> for large L, in agreement with refs. 6 and 10.
For d > 2 and large L the minimum of S is attained on the trajectory which
in the region of constant potential goes in the direction ^/\/d(d — 1)
(— 1,..., —\,d—\) and the value of the action is again S In L ^<&(Q)/2D up
to lower order terms, as pointed out in refs. 8 and 10. The exponential
decay of <P(px) implies that px(B) is smooth also at zero.

10. CONCLUSIONS

In this paper we have analyzed the stochastic dynamics of Lagrangian
trajectories for Gaussian, time-decorrelated random velocity fields con-
sidered in the Kraichnan model of passive advection. We found that the
dynamics is characterized by two related phenomena. First, the Lagrangian
trajectories loose in the limit of high Reynolds numbers the deterministic
sense for a fixed velocity realization due to their sensitive dependence on
initial conditions. Second, their relative stochastic dynamics is dominated
by slow resonance-type modes. The slow modes determine the average
characteristics of the spread of Lagrangian trajectories responsible for the
loss of their deterministic character. Both phenomena were essentially due
to nonsmoothness of the typical velocities signaled by fractional Holder
exponents in their spatial dependence. Since the turbulent velocities are
nonsmooth in the limit of high Reynolds numbers, we expect the two
phenomena to persist for more realistic velocity ensembles and to continue
to be responsible for the anomalous scaling, at least for that of passive
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for fixed initial value h(0) = e (with H2 standing for the SL( ^-invariant
metric on Hd). This is the same instanton as in the field theoretic MSR
analysis of ref. 10. For rotationally invariant /, the problem reduces to the
one on SO(d}\SL(d}/SO(d) with the action

and with the initial value <j>,,= 0. In d= 2 the minimal value of S is



scalars. For the spatially smooth velocities, we calculated the Lyapunov
exponents describing the sensitive dependence of the Lagrangian trajec-
tories on initial conditions for distances smaller than the viscous scale.
Using harmonic analysis on the symmetric spaces SL(d}/SO(d] we also
obtained in this case an explicit form of the characteristic functional of the
stationary state of the passive scalar and exhibited an exponential decay of
the p.d.f.'s of smeared values of the scalar relating the decay rate to the
properties of the ground state of the Calogero-Sutherland Schrodinger
operator with a potential.

APPENDIX A

We shall make explicit the structural result of Sect. 6 for the heat ker-
nel e~<A/2(x, ,x0). In the angular momentum / = 0, 1,... sector,

The spectral decomposition of M2(/} has the form
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which is a positive operator in L2( ]0, co[, rd ' dr). The generalized eigen-
function of M2(/) corresponding to eigenvalue £^0 involves the Bessel
function

where

Since

we infer that



i.e., that dv(E} = cdE for some positive constant c. Hence

Let i^2: L2(]0, oo[, rd l dr) -» L2(R, du) be another unitary operator
defined by
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Since, on the other hand, 'J1/SM2<%~1 = eysM2, see Eq. (6.3), it follows that

and for

we obtain \™ \f(E}\2 dE = \™ \f(r)\2 rd~l dr. Substituting E=e7", we shall
define

Note that

so that U2 = "(/~l '^2 commutes with °US. Besides,

as follows from Eq. (A. l l ) . This is the relation (6.8) for « = 2. Since,
explicitly,



for p = 0, I,... Since the true (more regular at the origin) zero mode of
M2(l) occurs at scaling dimension a/ 0, this is exactly the analytic structure
predicted for On(a). The function r"l'p (multiplied by an angular term)
represents a slow 2-point mode in the angular momentum / sector.

APPENDIX B

Let us briefly consider the convergence properties of the integrals
(8.24). Let kteSO(2) be rotation matrices s.t. ui = ki(ri, 0) where r,= |w,|.
We have g(z,rl k, = (krl g(z,))-1 =kl,g(krlz,)-1 for some k',eSO(2).
Denoting ^ ( k ( r , 0 ) ) = ^ ( r ) , observing that |g(r,.)~' (/",., 0)| =r,.jr1/2 and
using the SL(2) invariance of dv(z,), we obtain

822/90/3-4-4
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and the Mellin transform is the composition of ^"2 and the Fourier trans-
form, we obtain for Re a = d/2

The unitarity implies that ycD = 1 so that, finally,

The right hand side has a meromorphic continuation to the complex plane
of a with poles at



Since <& = C&L has rapid decay at infinity, the integrals are effectively cut to
y,>(r,./L)2 and produce logarithms of (rt/L) as these ratios tend to zero.
The most singular contribution is from yid(l — y\) y 2 & ( y \ — y 2 ) term
which yields 4 ln(r1/L)ln(r2/L)-2(ln(r1/L))2 if r, >r2 and 2(ln(r2/L))2 if
r2>rl. Thus
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where «-,• = «• ,.+ !&,• is the rotation by the angle between w,-+ 1 and «,-. We
shall study the behavior of F2n as rt tend to 0. The following is a useful
relation:

For the 4-point function, noting that Im(jc1z1) = y 1 y l where

3 being the angle between u2 and ult we obtain

Consider first the case 5 = 0 i.e., y\ = \. Then

for 5 = 0.
For 9 7^ 0, the y2 integral yields



where B is bounded. For the ln(y,) term the only singularity is at yl small
and this term is bounded by const. \\n(rljL)\. The rest has same leading
singularity as the 3 = 0 calculation. Thus recognizing in (B.6) the 2-point
singularities (8.9), we infer that the leading singularity of the 4-point func-
tion is Gaussian, the sum of products of 2-point functions.

The analysis of the general correlation is similar though tedious. When
all the points are on the same line i.e., all the angles are zero, we can do
all the xt integrals by (B.2). Most singular contribution is the one where all
Go(yt-i< yi) are replaced by l/(4£>) yid(yi_l — y/). Summing over the per-
mutations of the H, yields
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were • • • is less singular. Non-zero angles give again subleading contribu-
tions. The subsequent sum over unordered pairings gives the Gaussian
expression for the leading short-distance singularity of J^n L( \) in terms of
the singular contributions to the 2-point function, in agreement with the
observations of refs. 1 and 6.

Finally, for d > 2, to extract the leading singularity some bounds for G
are needed. Let us here note only that for of = 3 if all the /c, are identity,
then the x integrals can again be done and the result is that G gets replaced
by G0 where

on L2((yly2)~2dyldy2) (we have put yl =ea, y2 = ep in (8.26)). The
behavior of G0 near y/ = 0 is calculable and the leading singularity can
again be shown to be given by products of 2-point functions. Using the
Mellin transform we may write
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